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We analyze the thermodynamics of the Overhauser model and demonstrate 
rigorously the existence of a phase transition. This is achieved by extending 
techniques previously developed to treat the BCS model in the quasi-spin 
formulation. Additionally, we compare the thermodynamics of the quasi-spin 
and full-trace BCS models. The results are identical up to a temperature 
rescaling. 
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1. I N T R O D U C T I O N  

In two previous works ~1"2~ we introduced a new method for calculating the 
thermodynamics of the full BCS model (3) (i.e., with nonconstant energies 
and interactions) in the quasi-spin formulation. (4) The method has already 
found further application: it has been used to solve the full spin-boson 
model.t 51 

In this paper  we extend the method to treat the Overhauser model ~6) 
with reduced Hamiltonian (7) 

k 2 
H =  ~ * 

k , s=  ++_1 ~ a k ' s a k ' s  

1 
~ ~ U(k, k') a~+q/2,+ * (1.1) , 1 a k  q/2, 1 a k ' -  q /2 , -  1 at,'  + q/2, + 1 

where the a # are fermionic operators, k is a momentum index, q is a fixed 
momentum vector, and +1  indicates spin up or down. In ref. 7 a 
Hamiltonian of this form was used within an algebraic framework. 
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The Hamiltonian models electronic interactions in certain metals, 
most notably in chromium. Below a critical temperature the interactions 
give rise to coherent excitation of a spin-density wave with wave vector q. 
Experimentally, the amplitude of the spin-density wave has a temperature 
dependence strikingly similar to that of the energy gap in the BCS model. 
We shall see that there are indeed great mathematical similarities between 
the two models. Note that the Hamiltonian is of mean-field type: although 
the interaction is not homogeneous (i.e., U is not constant), it is scaled by a 
factor 1/V. 

In order to calculate the thermodynamics when q v~ 0, it is necessary to 
go beyond the quasi-spin approach of refs. 1 and 2. The reason for this is 
the following: in the quasi-spin approach one restricts one's attention to 
the subset of states in Fock space which have nonzero matrix elements 
with the second (interaction) term of the Hamiltonian. For the H in (1.1) 
this is the set of states for which all the pairs of levels {(k + q/2, + 1), 
(k - q/2, - 1) ) are singly occupied. When calculating the partition function 
Z = t r a c e  exp(- /~H),  the trace is taken over these states only. However, 
states in which the pairs are either full or empty also make a contribution. 
We shall see that this contribution is significant when q 4: 0. 

It turns out that when q =O the free energy calculated using the full 
trace is essentially the same as that calculated in the quasi-spin for- 
mulation. We demonstrate this fact for the BCS model with Hamiltonian 

1 
H B c s = H o + - - ~  U ( k , k ' ) a *  a* , k , + l  --k, la--k' ,- lak' ,+l 

k . k  

where Ho is quadratic in the momentum operators. As we said before, the 
two models are mathematically very similar. The physical difference lies in 
the pairing of states. The BCS interaction has nonzero matrix elements 
only between states for which the pairs of levels { (k, + 1 ), ( - k, - 1 ) } (the 
Cooper pairs) are either full or empty. 

We now describe in more detail the methods used in this paper. The 
first task is to write the model in a form we can treat by using techniques 
from ref. 2. This is done by decomposing Fock space as the sum of a num- 
ber of subspaces, each of which has a fixed number of pairs of levels either 
full or empty. On each of these subspaces the partial trace over singly 
occupied pairs is trivial to perform; the partial trace over the remaining 
pairs is exactly that which occurs in the calculation of the partition 
function for the BCS model in the quasi-spin formulation. 

The decomposition of Fock space mentioned gives rise to a degeneracy 
in which each contribution to the partition function occurs with a certain 
multiplicity. These multiplicities can be used to construct a volume indexed 
family of probability measures. We show that this family of measures 
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satisfies a large-deviation principle. ~8"9) Roughly speaking, the theory of 
large deviations allows us to obtain a variational expression for the largest 
contribution to the free energy in the thermodynamic limit. Thus, this work 
can be seen as making rigorous the approach in ref. 10 to treating the BCS 
model. 

We now summarize our previous treatment of the full BCS model. 
Our method consists in partitioning the system into smaller subsystems 
and approximating by Hamiltonians which are constructed from functions 
of total quasi-spin operators for these subsystems. The approximating 
Hamiltonians can be treated by an extension of the techniques in ref. 11. 
There, a large-deviation principle was found for the measures arising from 
the multiplicities of the irreducible representations in the decomposition of 
the total spin operator. Berezin-Lieb inequalities ~12 14) were used to obtain 
upper and lower bounds for the free energy, bounds which coincided in the 
thermodynamic limit. 

The layout of the remainder of this paper is as follows. In Section 2 we 
define the model explicity. We immediately define the approximating 
Hamiltonians, and prove that the approximation becomes exact in the 
thermodynamic limit (Theorem 1). We then carry out the two decom- 
positions outlined above, and rewrite the free energy in terms of the 
corresponding family of measures. In the Appendix we prove a large- 
deviation principle for this family (Theorem 6). In combination with our 
previous results on the quasi-spin BCS model (summarized in Theorem 3), 
this enables us to obtain the variational principle for the free energy density 
in the thermodynamic limit (Theorem 7). In Section 3 we analyze the varia- 
tional problem. We have attempted to calculate the free energy, but our 
results here are incomplete: we are unable to identify the phase transition 
precisely. We show that there are inverse temperatures/3, and ~t, 0 < ~t ~< 
/3, ~< ~ ,  such that if/3 < fl,, then the system has the free energy density of 
a free electron gas, while if/3 >/~t, it has a different form, corresponding 
to the excitation of a spin-density wave. Finally, in Section 4 we give an 
outline of the application of the methods of Sections 2 and 3 to the 
full-trace BCS model. It turns out that the variational analysis can be 
carried through completely, and gives (up to a temperature rescaling) the 
same results as for the quasi-spin formulation of the model. 

2. THE T H E R M O D Y N A M I C  L IMIT  

2.1. The Model  

We consider a slightly more general model than that described in the 
introduction. Let {AI: l =  1, 2,...) be a sequence of regions of Euclidean 
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space Nv and denote the volume of A t by Vt; we associate with the region 
A/ the  sequence of momenta {k l ( j ) : j=  1, 2,...}, where each kl(j)  is in N~. 
We make the assumption that the sequence of measures {#l} giving the 
distribution of momentum states 

1 
#,(B) = ~  # {j: k , ( j )~B}  

for Borel subsets B of ~v converges weakly to a measure # which is 
absolutely continuous with respect to Lebesgue measure. We use this 
property at a technical point in the variational problem. It is satisfied by, 
for example, the momentum distribution of free electrons in an increasing 

conditions. We shall be sequence of cubes with reasonable boundary �9 ~16) 
considering only those momenta in a cutoff region s which is a closed, 
bounded region in ~v and we assume that #(O) < oo. 

With each At we associate a one-particle Hilbert space ~ for the 
electrons. With each kt(i) in O we associate a pair of vectors in ~ which 
we label Ct(J, + )  and ~l(J, - ) :  +- designates spin up or down. The set 
{~t(J, - ) :  k t ( j )~(2)  is taken to form a complete orthonormal basis in Y~. 
The physical momenta of the electrons with wavefunction ~l(J, + )  and 
~l(J, - ) are kl(j)  + �89 q + 6 ~- (j) ] and kl(j)  - �89 q + 6 F (j)],  respectively: 
this defines the quantities @(i),  and l [@( i )+6 i - ( i ) ]  measures the 
deviation of the difference of two momenta from the fixed momentum q. 
With 6l=max{l[@(j)[[:k l ( j )EO} we assume that the pairing of one- 
particle vectors is carried out so that 

lim 6 l = 0  (2.1) 

Let ~ be the antisymmetric Fock space over ~ and a*(j, +_ ), a(j, +_ ) 
denote the creation and annihilation operators on o~ for the states 
Or(J, -+ ). These satisfy the usual anticommutation relations 

{a(j, #), a*(j', #')} = ~,~,~j,j, 

The Hamiltonian for the problem Hi acts on ~ and is given by 

g l = s j ~  k z ( j )+~[q+6t+( j ) ]  a*(j, +)a( j ,  +) 

+ 2j=1 5 [-q+6t-( j)]  a*(j, - ) a ( j ,  - )  
1 N~ 

U(kz(i), k,(j)) a*(i, + ) a(i, - ) a*(j, - ) a(j, + ) (2.2) 
r l  i, = 1 



Thermodynamics in the Overhauser Model 453 

where Nz= V~#t(f2) is the number of pairs of electron levels and 
U e  C(O, s is a symmetric function. This completes the definition of the 
model. 

Remark. The dispersion relation k~-*k 2 is not crucial for what 
follows. The whole analysis could be carried through for dispersion 
relations k ~ E~(k) for spin s = ___ 1, where the E~ are continuous functions. 

2.2. The  A p p r o x i m a t i n g  H a m i l t o n i a n s  

Let f~(fl) be the free energy density 

1 
f t  (fi) = - trace exp - / / / t t  

Vl 

We shall prove that ft(fl) converges as l ~ Go and shall obtain a variational 
formula for the limit f(fi). The variational problem is analyzed in Section 3. 
Our method is to approximate/4t by a Hamiltonian for which the method 
of ref. 11 can be used. Choose L > 0 such that g2 c E - L ,  L]  v, and for each 
M e  ~ partition E - L ,  L]  into M v cubes of side 2L/M.  Denote these cubes 
by {B m .--M" m =  1, 2,..., M ~ } and let B mM _ B  m _  --M 0 ~ .  It is convenient to define 
the quantities 

~/~ (i) = �89 2 + �88 + 6~ (i)]2} 

and 

~ (i) = k , ( i ) .  [q + 6 + (i)] 

We define the approximating Hami l t on i an / t~  by 

My (M 1M) 
ffI~ t =  • qm +-~em ~ a*(i, + )a(i ,  + )  

m = 1 k l ( i ) e B  M 

~r~ / M 1 M\  a * ( i , - - ) a ( i , - - )  

m = 1 \ -- / k l ( i  ) 

1 M~ ( 
~ Um~,,m ' 2 a*(i, + ) a(i, - ) 

V I  m , , , . ' =  1 k l ( i ) ~  B~m 

x ~ a*(j ,  -- ) a(j,  + ) )  
k t ( j )  ~ B ~  / 

(2.3) 
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where 

l ~ ( ) M__ 1 1 1 .m- ~(__~)f.~(dk) ~ k:+~q2 
if i It(B m ) = O 

otherwise 

t 
0 

u(2)  ~#(dk)k q 

if #(B M) = 0 

otherwise 

l 0  if M M #(Bm ) #(Bin, ) = 0 
M __ 

Um'm'-  M 1 M fB #(dk) /~(dk ' )  U(k, k ' )  
] A ( B m , )  [ I ( B m  ) M •  

otherwise 

The use of this definition is made clear by the following theorem. 

T h e o r e m  1. Let 

1 
fff(f l )  = - trace exp - fl/4ff 

Then limM~ oo IfY(fl)--f t(f l) l  ~< O(6l) for sufficiently large l. Hence 

lira f l ( f l )=  lira lira fY(fl)  
l ~ c o  l ~ o o  M ~  

(2.4) 

when the limits on the rhs of (2.4) exist. 

Proof.  By the Peierls Bogoliubov inequality, 

1 
I f~ ' ( ,B)-f t (H)l  ~ HH M -  Htlt (2.5) 

Therefore 

[ f f f ( f l ) -  f/(fl)[ 

MY I ] 
~< ~ /~+(B M) sup lem~--e?(i)[+2 sup ] ~ - q ? ( i ) [  

m = 1 [-kl(i) ~ B~m, +_ kl(i) E B M, + 

M v 
+ ~ M M i I~t(B m ) sup U(kl(i) ,  f l l ( n m  ')  [ -- k,(j))l U m ,  m' 

m , m ' =  1 kl(i)~B~lm, 
, M kl (J) a B m, 

(2.6) 
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By virtue of the continuity of U and of the function k ~ k z 

lim jf~4(/3)-fz(/~)[ ~< c~61+ C2(6/)  2 
m ~ o v  

for some positive constants Cl and c2, and so the first statement of the 
theorem follows. | 

We next give a variational expression for the limiting approximate free 
energy density. 

T h e o r e m  2 .  fM(fl) = l i m t  ~ ~ f~t(fl) exists and is given by 

f M ( f l ) =  __sup{SgM(fl; t, r, 0, ~b): r, t6 [0, 1] M~, 0~ [0, n] M~, ~b~ [0, 2n] My} 

(2.7) 

where 

5~g(fl; t, r, 0, ~b) 

1 ~ 
= -  ~ #(Bm M) log[4 exp(-f l r /~)  cosh/~r/~] 

/ ~ m = ]  

1 g~ 1 My 
~m~= #(BMm ) tm lOg cosh fltlMm ---fi • #(BM) J(tm) 

1 m = l  

Um'mtmtm'rmrm" 
m , m ' =  1 

x sin 0m sin 0 m, COS(~ m - -  ~m ' )  

1 My 1M~ 
#(Bin ) tmI(rm) #(Bm )tm rm gm COS 0 m ---~ E M 

m = l  m = l  
(2.8) 

where 

J(t)  = t log t + (1 - t) log(1 - t) + log 2 (2.9a) 

I(r) = �89 + r) log(1 + r) + (1 - r) log(1 - r)] (2.9b) 

The remainder of this section is concerned with the proof of this result. 

2.3. Reduction to the Quasi-Spin Model 

We introduce another Hilbert space ~ and a unitary map Wt from 
to 4 .  We choose the basis vectors in ~ as follows. Let 
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~kt(j ,  1 )  = 1 ~ C 

~,(j ,  2) = ~,(j ,  + ) 

~9,(j, 3) = O,(j, - ) 

~bz(j, 4) = e (o , (  j, - ) | O,(J, + )) 

(2.1o) 

where P is the total antisymmetrization operator. Then our basis of vectors 
is ~ is the set of vectors 

Or(v1,..., VN,)--=e(oz(1, vl)@ "'" @ 0,(N,,  ~)NI)) (2.11) 

where vje { 1, 2, 3, 4 } for j e Iz = { 1, 2 ..... N, }. As ~ we choose the space 
(C4) | Let ~b(v): v =  1, 2, 3, 4 be the vectors (1, 0, 0, 0), (0, 1, 0, 0), 
(0, 0, 1, 0), and (0, 0, 0, 1 ), respectively, in C 4 and define 

OI(V1 ..... VNI) = ~ ( Y l ) @  ' ' "  @~)(VN,) (2.12) 

The ~bt form a basis for 4 ,  and we define the unitary transformation Wt by 

WI@I(Y1 ..... YUl) = ~ I ( V 1  . . . . .  VNI) (2.13) 

For a products of two fermion operators a#(j, v)ae(j, v') the action of its 
transform under Wt. W7 ~ is simple to work out (this is not the case for 
single fermion operators): 

0 0 0 O )  
0 1 0 0 

Wta*(j, + ) a ( j ,  + ) W ;  ~= 0 0 0 0 |  

0 0 0 1 �9 J 

(2.14a) 

0 0 0 0 )  
0 0 0 0  

W~a*(J ' - )a (J ' - )W[- l=  0 0  1 0 |  

0 0 0 1 j 

(2.14b) 

0 0 0 0 )  

Wta, ( j ,_)a( j ,  + )W~I=Cj=  0 0 0 0 
0 1 0 0 |  

0 0 0 0  J 

(2.14c) 

where the j subscript indicates that the matrix operates on the j t h  com- 
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ponent of the tensor product (2.12). We can write the transformed 
Hamiltonian HM= WtFIyWF 1 as 

/-/;"= Z Z M M .=1  § 2 2 rlmBi 
m = l  i:kl(i)+ B~4m m = l  i:kl(i)+ l~tm 

1 M~ 
VI Z U,,,M.m ' ~ C* Z C+ (2.15) 

m , m ' =  1 i:kl(i) EB M j:kl(j)r 

where the operators {A/, B/: j =  1,..., NI} have the form (o0 oo)(_1oo0) 
0 1 0 0 0 0 0 0 

A/= 0 0 - - I  0 @lI+\J' Bj= 0 0 0 0 | 

O 0  O 0  j 0 0 0  1 j 

In order to calculate fy ( f l )  we carry out a decomposition of the space 
4 .  For each Y _  1l define the projections o0oo) 

P z . r = @  0 1 0 0 (2.17a) 
i~r 0 0 1 0 

0 0 0 0 i 

and 

1 0 0  O )  

0 0 0 0 (2.17b) 
QI'Y= @ 0 0 0 0 j r  l t \  Y 

0 0 0 1 g 

and let ~, r = Pt, Y | Qt, r- In 4 ,  WF l~l, Y Wl is the projection onto that 
subspace comprising pairs of levels ~+(J, + )  and O r ( J , - )  which are 
half-filled when j s Y and either full or empty when j ell \  Y. One 
demonstrates readily that 

~ , r =  1,,; [Q,,y, HM]=EP,,r, HM]=O (2.18) 
Y-=It  

(In fact, the last two equations hold for H+ as well as H~t: the 
approximation is not crucial at this stage.) 

Denoting by 4 , r  the range of ~ . r ,  we can decompose 
trace exp( - flH~) over the subspaces { 4 .  r: Y-~ 1l }. For any Y_~ Ii, define 
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S~t(Y) = {i e Y: k,(i)~ BMm} [SO that in particular Sm(II)M ~-. {i:k,(i) eBm}].i 
Then 

trace exp-flH~ 4 = Y~ trace ~. v e x p ( - f l H y )  ~ . r  
Y=_it  

=exp - f l  2 • r/ 
m = l  i e sgm( i i )  

x ~ trace exp -flHz, ~ (2.19) 
Y ~ _ I  I 

where H~r is the restriction of H M to 5~t, r . ~  Identifying ~ , r  with @ ~ ~ C 2, 
we can write H M I , Y  a s  

1 i �9 s M ( I l \  Y )  

where 

and 

M~ 1 MY 
M H ~ : E e m  E o, E M z __ - -  U m ,  m ' 

= 1  i ~ s M ( y )  V 1  m m , m '  ~ 1 

/ " j e s M ( y )  

(2.21) 

a~ = 1 |  ..- | 1 7 4 1 7 4  --- | 1 6 3  a C 2 (2.22a) 
i 

/ # l~\ Y \ 
5 ~ # = l | 1 7 4 1 7 4 1 7 4 1 7 4  i--@, C2) (2.22b) 

where {o#: # = +, - ,  z} are the usual Pauli matrices, the i indicating 
that they act on the ith component of the tensor product (2.12). Using 

traceaq | ae2 eA | 1 + 1 | B = trace~, e A trace~e2 e B 

to perform the trace over the range of Qt, r for each Y, 

trace exp H~ t 

=exp --fl 2 2 qM 
r n =  J{ i~  s M ( l i )  

x 2 exp 2 l o g 2 c o s h f l ~  1 tracecxp - f l H f  
Y ~ _ I  1 m = l  i ~ S m ( l l \  Y )  

(2.23) 
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There is a degeneracy in the decomposition (2.23) over the subsets Y 
of It. Let N ~ =  Vl~t(B~) and denote by ) ~  the set of all MV-tuples of 
integers _n = (nl,..., n ~ )  such that 0 <.nm ~N'~. For each _n in Z~, let 

Z~t(n)= {Y~_I,: # M _ S m ( Y ) - n m ,  m =  l,...,M v} (2.24) 

Then the members of the set of Hamiltonians {Hr~: YsZ~(_n)} are 
unitarily equivalent to HM(n) defined by 

_ gm,  m ~ (5" H M ( n ) :  m:lZ ~rn i=12 (Ti Vlm,  ' = I  i 1 1 

Thus, given _n in Zff, the contributions to (2.23) for any Y in Zff(_n) are 
identical, and occur with a multiplicity 

= 1-I 
m = l  \ r t m , /  

Hence we can write 

(2.26) 

trace exp - / ? H ~  

= exp( - /~N t t/m ) 
_nez~ m = l  { . \ r i m , /  

[log 2 cosh M m - -  n m  ) ] } trace finn (N, exp -/~HM(_n) (2.27) X exp 

The traces remaining in (2.27) have been analyzed in ref. 2. HM(_n) is 
decomposed according to the irreducible representations of SU(2) and the 
Berezin-Lieb inequalities are used to obtain upper and lower bounds for 
the trace over each component. We give only a brief account here: a fuller 
treatment can be found in ref. 2. 

Denote by H the irreducible unitary representation of the group SU(2) 
acting in C 2, and define the unitary representation Hn of SU(2) in (C2) | 
by 

H , ( g ) = H ( g ) |  ... |  g s S U ( 2 )  (2.28) 
n times 

For n > 1, Hn is reducible and decomposes into a direct sum 

c(n,J) 
Hn = 0 G gJ'k 

JEA n k= 
(2.29) 
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where A . =  {0, 1 ..... n/2} is n is even, and An= {1/2, 3/2 ..... n/2} ifn is odd, 
and H J'k is a copy of the irreducible representation H s of SU(2) acting in 
C 2s+~, and c(n, J) is the multiplicity of that representation in the decom- 
position. Define the operator h M on (C2) | by 

MY 1 MY 
h y = 2  M z _ _  Z M + - (2.30) 

~'mO'm VI  Um, m'G'm(~m' 
m = l  m , m ' = l  

Let p ,  and pS be the representations of the Lie algebra of SU(2) 
corresponding to H ,  and H J, respectively. Then for _n s )~t 

H i ( n )  = p,,  | . . .  | p . ~ h ~  t (2.31) 

and thus 

trace exp - - f l H M ( n )  --~ 2 C(ni, J1 )""  c ( n ~ ,  J M  ~) 

J~ Anl x - �9 �9 • AnMv 

x t r aceexp- - f l { (pJ~ |174  (2.32) 

Let M f t  (fl, "): [0, 1]M~--* N be defined by 

- 1  
f~t(fl, x) = y ~ t l o g  trace exp _ f l { ( p S , |  . . .  |  (2.33) 

if x j=  2Jj/NSt, and by interpolation elsewhere. Then, using (2.27), (2.32), 
and (2.33) 

trace exp -- f lH~ 

2 ~ H e x p ( -  m u = fiN l tim ) 
,_ex M (1/2)xjNl~Ao / m=l 

j= I , . . . ,M  v 

x exp[log 2 cosh fl~I,M,(N7 ' -- rim) ] 

• ( nm / C( nm ' xm NT'/2 ) exp - fl Vt f ~I (fl' x ) ] (2.34) 

If )~t is the set of all M~-tuples (tl, t2,..., i'M*) such that t m = n m / N • :  n m = 

0, 1 ..... N~, we can rewrite (2.34) as 

trace exp - flH~ t 

= 2 2 H exp( ., M --flNl tl,. ) 
! c ~  M (I/2)xjNJl~AtjNJ: m = l  

j= I , . . , ,M  v 

x exp[log 2 cosh fitIMmNT(1 -- tin)] 

( NT' 
C(tmNT, XmNT/2) exp - f i  VlftM (fl, x ) ]  (2.35) 

x \ t m N T J  A 
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All necessary information about fM is contained in the following 
theorem, which can be extracted from ref. 2. 

Theorem 3. 

[[ 1+ 
m = 1 s 2 ) M ~  

~<exp --flvJM(fl, X) 

~ < [ [  1+  
m = 1 s 2 ) M V  

where 

dg2 u.(O, r ) exp -- flV, f i (x ,  O, r ) 

dQM.(O, r - f lV ,  f y(x, O, ~)) 

m v 

d f 2 . = ( 4 u )  M~ ~ sin O ,. dO ,. dOm d~ m 
r n = l  

(2.36) 

and fy(fl,-_ ), fl-M(fl,') are functions differing from the function M f od(fi, " ): 
[0, 1] M~'-~ [~ defined by 

M 1 M~ 
--fo, z(fi, X)=~ ~ #,(BMm) X,. COS Om 

m = l  

1 MY 
+ -~ Z #,(B~) #,(B~) x,,xm, u~,~. 

m ,  rr t  ' = 1 

• sin 0m sin 0,., cos(~b,. - ~b.,,) (2.37) 

by functions which converge to zero uniformly in x, 0, and r as l ~ oo. 

2.4. Appl icat ion of  the Theory of Large Deviat ions 

In preparation for the thermodynamic limit, we introduce two families 
of measures, and rewrite (2.35) in terms of them. In the Appendix we 
summarize the theory of large deviations and prove a large-deviation 
principle (8'9) for these measures which will enable us to obtain a variational 
formula for fM(fl) = lim/~ ~ fM(fl). 

Propos i t ion  4. Define a probability measure L. interval [0, 1] by 

for n~> 1, where B is a Borel subset of [0, 1]. Then the sequence of 
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measures { l_,: n = 1, 2,... } satisfies a large-deviation principle with constants 
{n} and rate function J, where 

J(x) = x log x + (1 - x) log(1 - x) + log 2 (2.39) 

is as defined in (2.9). 

Proof. The proof of this simple result is in ref. 9, Example 1.1. | 

Remark. The measures {~,: n =  1, 2,...} are the distributions of the 
means {n-lS,: n= l, 2,...} of Bernoulli random variables (state space 
{0, 1 }, probability 1/2 each). Thus, n_~ is the distribution of the propor- 
tion of half-filled pairs in the box B M at volume Vt. 

P r o p o s i t i o n  5. Define a probability measure P,  on the interval 
[-0, 1 ] by 

1 
(2K+ 1) c(n, K) (2.40) P . ( B )  = ~ K~ ~: 2 K / .  ~ 

for n~> 1, where the c(n, K) are as in (2.29), B is a Borel subset of [-0, 1], 
and, by Po=61,  the Dirac measure with support at 1. Then the sequence 
of measures { P , : n = 0 ,  1, 2,...} satisfies a large-deviation principle with 
constants {n} and rate function 

I ( r ) - - � 8 9  (2.41) 

as defined in (2.9). 

Proof. This result is proved in ref. 11, Theorem 1. | 

Remark. The simple form of the rate function (2.41) arises, roughly 
speaking, because the c(n, K) are derived from the n-fold convolution of the 
distribution of weights of the representation H 1. 

For future use we define the family of probability measures 
{P',: n = 1, 2,...} on [0, 1], where 

1 
P'(B) = c(n---~) • c(n, K) (2.42) 

K E N : 2 K / n ~ B  

where c(n) = Y~A. c(n, K). 
In the Appendix we prove the following result. 

T h e o r e m  6. 
on Borel rectangles: 

Define a measure ~A~ on [0, 1 ] x [0, 1] by its action 

M,EA x B] = [ dn_,(t) [ dP,t(r) (2.43) 
JA JB 
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Then the sequence of measures {M,: n =  l, 2,...} satisfies a large-deviation 
principle with constants {n} and rate function K(t, r ) = J ( t ) +  tI(r) with I 
and J as defined in (2.9). 

Using the measures 0_, to count the multiplicities of the decomposition 
(2.23) and the measures P ,  to count the multiplicities of the decomposition 
(2.29), we can write the free energy as follows: 

M 1 
- f t  (f l)= ~ {log ImI~__ 1 2 ~  f[O, 1] d~-N~t(tm) 

x c(Nf'tm) f[o,1] dP~t~(rm)] exp-flVtf~t(tr)} (2.44) 

where (tr),~ = tmr m. Then can use the inequalities (2.36) to write upper and 
lower bounds for f~ ( f l )  in the following way: 

fiv--log ~ t ( t ,  r, 0, qt)exp flV, g~(fl; t, r, O, r 
[0,1] 2 x $2) My 

<~ - f f ( f l )  

or,1 f( ~<--~. log [~y(t, r, O, r exp flV, g}u(fi; t, r, O, qt) 
E0,132 x 32) M~ 

(2.45) 

where d~y(t ,  r, O, r  r) dff2M(O , ~) and ~}u is the product 
measure 

~ N ]  X ' ' '  X ~/~Ny' ( 2 . 4 6 )  

and 

g~(fl; t, r, O, O)= g~(fl, t)--f}U(tr, O, r 

~ ( f l ;  t, r, O, r  g~(fl, t)--f~(tr,  O, r 

where g~[t(p, .): [0, 1 ] M ~  ~ is the function 

(2.47a) 

(2.47b) 

1 top 

g}U(fl, t) =~P m=~l # , [ log 4 exp(flr/~) + (1 -- tin) log cosh flr/~] (2.48) 

Proof of Theorem 2. By Proposition 4 the sequence of measures 
{ ~ANT: / =  1, 2,... } satisfies a large-deviation principle with constants {NT'} 
and rate function L Thus, this sequence also satisfies a large-deviation prin- 
ciple with constants {fiVe} and rate function fl i M #(Bm )L With respect to 
the constants {flVt} the measure dtgM~ considered as a constant sequence 

822/54/1-2-30 
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satisfies a large-deviation principle with zero rate function. By repeated 
application of the large-deviation principle for product measures (ref. 11, 
Appendix 1), we see that the sequence {N~: l = 1 ,  2,...} satisfies a 
large-deviation principle with constants {flVt} and rate function J ~ :  
( [ 0 ,  1 1 2 •  M' --> [0 ,  0 0 ] ,  where 

1 MY 
J~t(t, r, O, O) =-~ ~ t~(BM) K(tm, rm) (2.49) 

m = l  

By Theorem 3, both the functions gM and ~M converge uniformly on com- 
pact subsets of ([0, 112x $2) My to --M ~'M g - J o ,  where 

1 MY 
gM(fl, t ) = ~  Z 

m = l  
#(BM)[1og 4 exp(flt/M) + (1 -- tin) log cosh fit/M ] (2.50) 

and so, applying Varadhan's theorem (see the Appendix) to both sides of 
the inequality (2.43), we obtain 

__ fM(fl) sup { gM(fl, t) M . = - - fo  (fl, tr, O, (>)--3~t(t, r, O, ~b)} | 
([0,1] 2 • $2} My 

(2.51) 

We obtain a variational formula for f(fl) by combining Theorems 1 and 2. 

T h e o r e m  7. Let J / /=  {(t, r, 0, ~b): t, r, O, 0 ~ L~( s #), 0 <~ t(k) <~ 1, 
O<~r(k)<<, 1, O<~O(k)<~, 0~<~b(k)~<2~} and define ~(f l ; - ) :  Jr R by 

5e(fi; t, r, 0, ~b) = ~( f l )  + ~(f l ,  t) + ~(f l ,  t, r, 0, ~b) (2.52) 

where 

1 
5,~ ) =-~ fo #( dk ) log { 4 exp[ -f l t / (k)]  cosh fltl( k ) } 

5~(fl, t) = --~ #(dk) t(k) log cosh flt/(k)--~ I~(dk) J(t(k)) 

~(/~, t, r, O, ~) - 2 ~ ~(dk) t(k) r(k) e(k) cos O(k) 

1 

1 
+ ~  

(2.53) 

- - fo tJ(dk) t (k)  I ( r (k) )  

fo• #( dk ) #( dk') U(k, k') t(k ) t(k') r(k ) r(k') 

x sin O(k) sin O(k') cos[~b(k) - ~b(k')] 
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Then f(/3) = limM ~ ~ fM(/3) exists and is given by 

f(/3) = -sup{Se(/3; t, r, 0, r (t, r, 0, r e Jr (2.54) 

ProoL We simply remark that the functional 5 e is a continuum 
analogue of the functional 5 PM in (2.8). The proof of the theorem is very 
similar to that of Theorem 3 in ref. 2, so we omit it. | 

3. T H E  V A R I A T I O N A L  P R O B L E M  

The variational problem which arises in the last theorem is very 
similar to that which is considered Section 3 of ref. 2. We therefore refer the 
reader to that paper for the proofs and here mention only the necessary 
modifications. We assume that U(k, k') > 0 for all k,  k' e f2. 

Define the function G: ~ x N --. ~ by 

Let 

6(x, y)= 

sinh(/3/2)x 1/2 
cosh fly + cosh(/3/2)x 1) 

1 + cosh fly/ 

gp(k) = G(le(k)l, q(k)) 

~ ( k )  = sup{G(x, r/(k)): x >~ le(k)l } 

Define the linear compact operators Uz on L2(I2, #) by 

if x r  

if x = O  

(3.~) 

and U~ by 

( UzO )(k ) = fa #( dk') g~(k ) g~(k') U(k, k') ~(k') 

(Uz~)(k) = f,~ #(dk') ],z(k ) ],z(k') U(k, k') O(k') 

(3.2) 

(3.3) 

Let 2(/3)= [[U~Hand ~(fl)= ]fU'~l[. Let rite(O, oo] be such that 2(/3)<1 if 
/3 </3, and 2(/3) > 1 if/3 >/3,. Similarly, let ~, e (0, oo ] be such that ~(/3) < 1 
if fl < ~r t and ~(fl) > 1 if/3 > ~,. Since gp >/g~, we have that ;[~ >~ 2~ for all/3, 
so that ]~, ~</3,. For a > 0, b i> 1, and y > 0 let 

h(a, b; y) = sinh[�89 + y2)1/2] y 
b + cosh[�89 2 + y2)1/2] (a 2 + y2)1/2 (3.4) 

Then we have the following theorem: 
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T h e o r e m  8. 

f(fl) = --fl #(dk) log 2 exp[ - f l t l (k ) ]  

x (cosh fitl(k) + cosh 

1 f,~ sinh �89 + A~(k)] ~/2 
+ -~ . .  #(dk) coshfltl(k)+cosh�89 

x (3.5) [a=(k) + J~(k)]  1/2 

where A s depends on fi as follows: if (a) fl ~< #,, then A~ = 0; if (b)fl > fit 
then A s is an element of ~s, the set of positive solutions of the gap 
equation at inverse temperature fl: 

A(k ) = fa l~( dk ) U(k, k') h(e(k'), cosh flq(k'), 3(k') ) (3.6) 

while if (c) fl,<fi~<flt, then As~ {0 u ~s}. 

ProoL We first change to the variables R, S, and t, where 
R(k )= t ( k ) r ( k )  and S(k)=t(k)r (k)s inO(k) .  For a > 0 ,  b>/1, and 
O<~x<~ y<<.z<~l let 

1 { z l o g b + J ( z ) } +  (y2_  zl  (3.7) g ( x, y, z; a, b)= - -~ -~ - -~ 

Let Y = { ( R , S , t ) :  R, S, t e L l ( O , # ) ,  O<~S(k)<.R(k)<-Gt(k)<~l} and 
define J :  Y --, ~ by 

J(R,  S, t) = 5eo + fo #(dk) g(S(k), R(k), t(k); e(k), cosh fl~/(k)) 

+ ~ • iz(dk) i~(dk') U(k, k') S(k) S(k') (3.8) 

Then f ( f l ) =  - s u p { J ( R ,  S, t): (R, S, t) E Jl/'}. Now (y, z)~--~g(x,y, z; a, b) 
is concave and its supremum is attained at ,-~x(R(a'b), tx(a.b)), where R X(a,b) and 
t(~ a,b) are the unique values o f y  and z in (0, 1) which satisfy 

arctanh y- = aft y z 2 (ya-x2)i /2 (3.9a) 
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and 
2,2 __ y 2  1 

(1 -- z) 2 - b 2 (3.9b) 

Let =LP= {S~L~(f2, #): O<<.S(k)<<. 1} and define ~ :  &a~---~ R by ~ ( S ) =  
J(R~,  S, t,), where we have written R, and t, for R~! i) .... hn,(.)) and 
t~! i) .... h~,()), respectively. Then f ( f l ) = - - s u p { ~ ( S ) : S E ~ } .  The proof 
that the supremum is attained is very similar to that of Theorem 5 in ref. 2. 
It is sufficient to note that (t, r ) ~  - tI(R/t)  is concave. We note here that 
the absolute continuity of # with respect to Lebesgue measure is used in the 
proof of Theorem 5 of ref. 2. 

For ~(fl) ~< 1 we prove an analogue of Theorem 4 of ref. 2; the proof is 
similar. Letting ~s(k)= (2/3)arctanh[Rs(k)/ts(k)],  then from (3.9a) 

cosh(fl/2) iPs(k ) 
~s(k) ~ I~(k)l, t,(k) = cosh flrl(k ) + cosh(fl/2) ~s(k) (3.10) 

Thus, the inequality 

1/2 ~ - , fl  [ r~(k)-sZ(k)]  -.~tann~ le(k)l (3.11a) 

of Theorem 4 of ref. 2 is replaced by 

sinh(fl/2) Os(k) 1 
[ -R~(k )  - S 2 ( k ) ]  1/= = I~(k) l  

cosh fl + cosh(fl/2) Os(k) ~s(k) 

~< I,~(k)l g~(k) (3.11b) 

We now treat the case 2(fl)> 1. The Euler-Lagrange equation for the 
problem is 

I,~(k)l S(k) r 
0 =  |p(dk') U(k,k')S(k') (3.12) [R2(k)-  S2(k)] 1/2 :n 

With 

A(k)  = S(k) le(k)l [R~(k) -  S2(k) ]  1/2 (3.13) 

this can be written in the form (3.6). Lemmas 2 and 3 remain essentially 
unchanged, so we conclude in a manner similar to Theorem 6 of ref. 2 that 
there exists a strictly positive solution of (3.6) which maximizes ~ .  We are 
unable to prove that solutions of (3.6) are unique. 

For 2(fl)~<l <~(fl) we deduce from Lemma2 of ref. 2 that the 
maximizer of ~ is either zero or in the interior of 5r Since the supremum 
is achieved, then in the latter case, ~n must be nonempty and contain the 
maximizer. We have not been able to determine whether or not ~e is 
empty. 
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Finally, (3.5) follows by insertion of (3.6) and (3.13) into ~ .  
We are unable to identify the critical temperature exactly, but the 

following proposition shows that one exists. 

P ropos i t i on  9. Given /3, let S~, the maximizer of ~ ,  be strictly 
positive. Then for all /~'>/~, the maximizer Sa, of ~ ,  is also strictly 
positive. 

ProoL 

- 

>>. - % ( 0 )  

= 

ts;(k ) I \ t~ to(k ) j j  

where the inequality is due to the fact that S~, maximizes ~ . .  Now J 
depends on t only through K, and so K(t, R/t) is stationary at to. Since 
(t, R) ~ K(t, R/t) is convex and S; maximizes ~ ,  we have that 

~'(S~')-~U~'(O)>~(~-~) fel~(dk)[Rs~(k)- R~ arctanh ~ ) 

(3.15) 
Thus the maximizer of ~ ,  is strictly positive. | 

4. A P P L I C A T I O N  TO T H E  BCS M O D E L  

The techniques used to treat the Overhauser model in Sections 2 and 3 
can also be applied to calculate the free energy density in the full-trace BCS 
model. In the quasi-spin formulation of the BCS model, traces are taken 
over only those states in which the Cooper pairs are either fully occupied 
or empty. We show that the results obtained in ref. 2 are (up to a rescaling 
of temperature) unchanged when the trace is extended over those states in 
which the Cooper pairs are singly occupied. 

The Hamiltonian in (2.2) is replaced by 

1 NI 
ffll=- ~ .~" g(kt(i))(a*(j, + ) a(j, + ) + a*(j, - ) a(j, - )) 

j = l  

1 NI 
j~ U(k,(i), k,(j)) a*(kl(i), +) 

V I  1 1 . ,= 

x a*(-kt(i), - )  a(-kt( j) ,  - )  a(kt(j), +) (4.1) 
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where g is a continuous function on s We have labeled the fermionic 
operators according to the spin and momentum of the particles they create 
or annihilate. Implicitly, the distribution of momenta is assumed to be 
invariant under inversion through the origin of momentum space. 

The reduction to the quasi-spin model is carried out with the following 
choice of basis vectors [cf. (2.10)] 

~l(J, 1) = ~9,(kt(J), + )  

~,(j ,  2) = 1~C 
(4.2) 

~bl(j, 3)=P(Ot(kt( j ) ,  + )| , - )) 
~b~(j, 4 ) =  ~ t ( - k t ( J ) ,  - ) 

The remainder of the analysis of Section 2 is identical apart from the 
assignments of the functions e and t/. It should be noted, however, that the 
origin of the a z terms in the quasi-spin formulation is physically different in 
the two models. In the Overhauser model it is due to the energy difference 
between the (k + q/2, + 1) and the (k-q/2, -1)  states, while for the BCS 
model it is due the energy difference between the full and empty Cooper 
pair states. 

One finds that 

f(fl)  = -sup{SP(fl; t, r, O, ~b): (t, r, O, ~b) ~ ~ '}  (4.3) 

where 

and 

5P(fl; t, r, 0, ~b) = 5r + 5~(fl, t) + 5g2( fl, t, r, 0, ~b) (4.4) 

5Po(~)= ~ i #(dk) log {4exp [ -  ~ ~g(k)l } (4.5a) 

1 
5~ (fl, t) = --flfe #( dk ) J( t( k ) ) (4.5b) 

'fo ~9~ t,r,O,~b)=-~ #(dk) t(k)r(k)g(k)cosO(k) 

~ f  #(dk) t(k)l(r(k)) 

+ -~ • #(dk) #(dk') U(k, k') t(k) t(k') r(k) r(k') 

x sin O(k) sin O(k') cos[~b(k) - q~(k')] (4.5c) 
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T h e o r e m  10. 

f ( f i )=~f  #(dk) I~g(k)-log21+fq.s.(~ ) (4.6) 

where fq.s. is the free energy density calculated (z) for the quasi-spin 
formulation of the BCS model with energy function g and coupling U. 

Proof. We adopt the same variables R(k), S(k), and t(k) as in Sec- 
tion 3. From (3.9b) with b = 1 we find that the supremum over t is achieved 
when t(k)= tR(k), where 

By direct calculation 

tR(k ) = �89 + R2(k)] (4.7) 

and 

where 

JV"= {R, SeL~(Q, #): O<~S(k)<.R(k)<~ l} 

~(/3; R, S)=-~ ~(dk) Ig(k)l [R2(k) - S2(k)] 1/2 

1 ( .  

+ 4 Jo • p(dk) p(dk') V(k, k') S(k) S(k') 

2 
f~ #(dk) I(R(k)) (4.10) 

The result then follows from Theorem 7 of ref. 2. | 

Remark. The surplus constant in (4.6) arises because a trivial 
constant operator was omitted from the quasi-spin Hamiltonian in ref. 2. 

A P P E N D I X :  P R O O F  OF T H E O R E M  6 

In this appendix we prove Theorem 6, the large-deviation principle for 
the sequence of measures {M,: n = 1, 2,...}. For the sake of completeness 

J(tR(k)) + tR(k) I(R(k)/tR(k)) = 2I(R(k)) (4.8) 

and so 

f ( f l ) = ~  #(dk) g(k)log2 - s u p { ~ } ( f i ; R , S ) : ( R ,  S ) e Y ' }  (4.9) 
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we first recall the results form the theory of large deviations that we shall 
need. (8,9) 

Def in i t ion .  Let { ~ n : n =  1,2,...} be a sequence o f  probability 
measures on the Borel subsets of a complete separable metric space E and 
{V,} a divergent sequence of positive numbers. We say that {�88 } satisfies 
a large-deviation principle with constants {V,} and rate function 
I: E--+ [0, ~ ] if the following conditions hold: 

(LD1) I i s  lower semicontinuous. 

(LD2) For each m <  ~ ,  {x:I(x)<~rn} is compact. 

(LD3) For each closed subset C of E 

1 
lim sup - -  log ~ ( C )  ~< - inf I(x) 

n ~ o o  V n x E C  

(LD4) For each open subset G of E 

lira inf 1 log ~ , (G) />  - inf I(x) 
n ~ o o  V n x ~ G  

Varadhan's  Theorem.  Suppose that the sequence of probability 
measures {0~n) on E satisfies a large-deviation principle with constants 
{ V,) and rate function I. Let {f~) be a sequence of continuous functions 
f , , : E ~  which are uniformly bounded above, and suppose that f ,  
converges to f:  E--* ~ uniformly on bounded sets. Then 

]im~ V~I l o g f E e x p [ V , f , ( x ) ]  ~,(dx)=supE { f ( x ) - - I ( x ) }  

The first step in the proof is to find the cumulant generating function 
for the sequence { [~n: n = 1, 2,... }. The result is heuristically obvious. 

P r o p o s i t i o n  A1. Let 

"~n(v' u) =-1 l~ n fEo 112 

Then 

exists, and 

.~(v, u)= 

with I and J as in (2.9). 

dMn( t , r )expn( tv+ru) ,  v,u~J~ (A.1) 

~(v, u ) =  lira .~n(v, u) 
n ~ o O  

sup [vt + ur -- tl(r) -- J( t ) ]  
( t , r )~  [ 0 , 1 ]  2 

(A.2) 
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Proof. First consider the case u = 0, 

~.,(v, 0) = _1 log f dQ_,(t) exp ntv 
n a [0A]  

Applying Varadhan's theorem and the large-deviation principle for the 
sequence {l_,: n = 1, 2,...}, we obtain 

lim ~(v ,  0 ) =  sup [ v t - J ( t ) ]  (A.3) 
n ~ o o  tE [0,1] 

which agrees with (A.2), since - t I ( r )  has maximum value 0. 
Next we take u > 0. Let D,  = {0, 1/n, 2/n ..... (n - 1)/n, 1 } c [0, 1] and 

for t e D,  define 

F~(t, u ) =  ~ 10g fEo, ll dP~,(r)exp nur (A.4) 

and extend by interpolation to the whole of [0, 1]. By convention on P0, 
F~(O, u )=u,  while for t n e D , \ { 0 }  we have from (3.9), (3.11), and (4.12) of 
ref. 11 that 

c- 1 f log cosh u + - -  ~< - log dP~(r) exp nut 
n n [o,13 

c + + l o g ( n  + 1)  
~< log cosh u + (A.5) 

where c -+ are positive constants. Replacing n by nt, u by u/t in (A.5) and 
multiplying by t, we find 

- c + + l o g ( n  + 1 ) 
f ( t ,  u) +C--- <~ F,(t, u) ~ F(t, u) + (A.6) 

n n 

where 

St log cosh(u/t), u > 0, 0 < t ~< 1 
F(t, U) 

Lu, u > 0 ,  t = 0  
(A.7) 

Note that t ~ F(t, u) is continuous throughout [0, 1 ]. Thus, writing 

~ , ( v , u ) = l l o g f  dO_,( t lexpnEtv+F,( t ,u)]  
n [o,112 

(A.8) 
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we obtain 

w 

_ f c l l og  dH_n(t) e x p n [ t v + F ( t , u ) ] + - -  
n [o,13 n 

~< ~n(v, u) 

1 r c + + l o g ( n +  1) 
~< - log dl_n(t ) exp n[tv + F(t, u)] -t (A.9) 

/'/ J [ 0 , t ]  n 

Therefore, using Varadhan's theorem, we get 

lim ~ ( v , u ) = ~ ( v , u ) =  sup [ v t + F ( t , u ) - J ( t ) ]  (A.10) 
n ~ o e  t e  [0,1] 

From ref. 11 it easily follows that F(t, u)=sup,~[0,1] [ur - t I ( r ) ] ,  so that 
(A.2) is proved for u > 0. 

Finally, we consider u < 0. For u < 0, Fn(t, u) <<. 0 for all t in D,  and 
Fn(0, u ) =  u. Now we have to find a lower bound for Fn(t, u) for u < 0 ,  
t eDn \{0} .  Let 

P =  - inf l l o g  P m ( { O } ) > O  
m > O m  

Given e>O and teDn\{O};  then 

d Pn, exp nur >~ P,, 0, ~ exp - - (A. 11 ) 
o,1] 2 

and thus 

But 

Fn(t, u)>~ t l l o g  P,t 0, (A.12) 
nt 2 

l l o g  Pm[0, a) ~ > l l o g  ~[~m({0})/> --P 
m m 

Therefore 

F~(t, u)~> --e for t<e /2P  (A.13) 

On the other hand, by Proposition 5, since t ~< 1, there is an No such that 

Fn(t, u)>~ - inf I ( r ) - e =  - e  (A.14) 
r~  (0,8/2 lul) 
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if nt > No. Thus 

Fn(t, u) >~ -~ 

and therefore 

forall  t e D n \ { 0 }  if n>2PNo/e (A.15) 

~,(v,O)>~,(v,u) 

~n(v, 0) if u / > - a  

o) + ! (exp_ n(. + 
n \2"  exp n~(v, O)J - e if u < - e  

(A.16) 

Here we have used the inequality log x + y/(y + x) <~ log x + y for 0 ~< 
x + y ~< x. Since e is arbitrary and .~,(v, 0)~> - l o g  2 for u < 0, 

lim ~,(v, u ) =  lim ~,(v, 0) 
n ~ o o  n ~ o o  

= sup [v t -J ( t ) ]  
t e  [0 ,1 ]  

= sup [v t+ur- - t I ( r ) -J ( t ) ]  (A.17) 
( t ,r)e [-0,1] 2 

since u r -  I(r) has maximum value 0 when u ~< 0. | 

I . e mm a  A2. K is strictly convex on [0, 1] 2. 

Proof. We calculate the 2 x 2 Hessian matrix H of K and show that 
its trace and determinant, and hence its eigenvalues, are strictly positive in 
(0, 1) 2. We have 

H(t, r)= (J"(t) I'(r) ~ (A.18) 
\ I ' (r)  tI"(r)] 

I", J", and t are positive, so trace H(t, r) is also positive. The determinant 
of H(t, r) is 

(1 - t) i cosh2(arctanh r ) -  arctanh 2 r 

which is positive also. | 

Proof of Theorem 6. Extend K to the whole of ~ 2  by 

~(t,r)=fK(t,r)~ if (t, r) e F0,1] z 
( + oo elsewhere 
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One verifies that (A.2) holds but with the supremum extended over (t, r) in 
the whole of ~2. Now, K ~ is a proper convex function, (aT) so that K" and 
are Legendre conjugates. By Lemma A2, K" is essentially strictly convex, so, 
by ref. 17, Theorem 26.3, ~ is essentially smooth: in particular, it is differen- 
tiable in ~2. The minimum of K(t, r) is achieved at a unique point, so all 
the conditions of ref. 9, Theorem II.6.1 are satisfied, from which we 
conclude the statement of the theorem. | 

ACKNOWLEDGMENTS 

We thank A. Verbeure and B. Nachtergaele for bringing the problem 
to our attention, and for making ref. 15 available prior to publication. 

REFERENCES 
1. N. G. Duffield and J. V. Pul~, Lett. Math. Phys. 14:329-331 (1987). 
2. N. G. Duffield and J. V. Pul6, Commun. Math. Phys. 118:475 (1988). 
3. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108:1175 (1957). 
4. P. W. Anderson, Phys. Rev. 112:1900 (1958). 
5. G. A. Raggio, Dublin Institute for Advanced Studies Preprint DIAS-STP-88-03 (1988). 
6. A. W. Overhauser, Phys. Rev. 128:1437 (1962). 
7. G. Fano, Nuovo Cimento 38:597 (1965). 
8. S. R. S. Varadhan, Commun. Pure Appl. Math. 19:261 (1966). 
9. R. S. Ellis, Entropy, Large Deviations, and Statistical Mechanics (Springer, 1985). 

10. D. J. Thouless, The Quantum Mechanics of Many-Body Systems (Academic Press, 
New York, 1961). 

11. W. Cegta, J. T. Lewis, and G. A. Raggio, Commun. Math. Phys. 118:337 (1988). 
12. B. Simon, Commun. Math. Phys. 71:247 (1980). 
13. F. A. Berezin, Math. USSR Izv. 6:117 (1972). 
14. E. H. Lieb, Commun. Math. Phys. 31:327 (1973). 
15. B. Nachtergaele and A. Verbeure, Symmetry breaking in the Overhauser model. 
16. L. G. Landau and I. F. Wilde, Commun. Math. Phys. 70:43 (1975). 
17. R. T. Rockafellar, Convex Analysis (Princeton University Press, 1970). 


